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RECEPTORS FOR URIC ACIDS. 2. A CAUTIONARY OBSERVATION 
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Abstract. Receptor 4 was designed to exceed the already high a$%ity of 1 for 2. Synthesis of 4 and its binding 

with 2 are described. 

The development of receptors which recognize neutral guests and the understanding of the principles which 

govern such interactions are goals of current interest.l Recently, we reported2 that the heptacyclic receptor 1 binds 

uric acid (solubilized as its tritylethyl derivative 2) with high affinity (Kassoc = 1 .O x lo6 hi-‘) in nonpolar organic 

solvents. Binding is believed to occur via complex 3. 

Witi the &j&w of examining the consequences of including within a molecule similar to 1 additional 

hydrogen bonding sites for the binding of 2, we designed a new receptor, 4. In 5, the putative complex of 4 with 

2, the two partners would be held together by a total of six hydrogen bonds, two more than are present in 3. Both 

systems (3 and 5) were designed using CPK models; the seemingly good “fit” in the CPK model of 3 (see ref.2 for 
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a photograph) and the tight binding observed between 1 and 2 engendered confidence that the apparently good fit 

found in a CPK model of 5 was predictive of even stronger binding between 2 and 4. We have now prepared 4 

and examined it,s affmity for 2. Contrary to expectations 4 is inferior to 1 as a receptor for uric acid 2. 
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Receptor 4 was prepared (Equation 13) from diamine 62 in two steps by conversion of 6 to the mono- 

butyramide 7 and acylation of 7 with acid chloride 8. Acid chloride 8 was synthesized3 from 10 as shown in 

Scheme 1; not surprisingly, 8 is somewhat unstable and must be used immediately upon preparation. 
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The binding of Z6 with 4 was measured (UV) in I:1 CH2C12/toluene2b under conditions identical to those2 

used for determining the binding of 1 with 2 (a control experiment with 1 and 2 reproduced the previously reported 

binding constant). The Kassoc for 2 and 4 is 1.1 x lo4 M-l; the afkity of 4 for 2 is thus a factor of ninety less 

than that of 1 for 2. 

The finding that 4 is inferior to 1 as a receptor for 2 was unanticipated. Unfortunately, the very limited 

solubility of 2,4 and 2.4 in those nonpolar organic solvents which do not interfere with hydrogen bonding 

precluded the use of 1H NMR to determine what is “wrong” in the 2.4 complex, With the objective of probing the 

matter in greater detail we prepared 15 and examined its binding with 16 as a model for that proposed for the 

southwest portion of 5. The strength of the binding interaction between 16 and 15 @Las= = 1.9 x lo2 Mm1 in 

CDC$] is consistent7 with the existence of three hydrogen bonds, and changes” in the 6’s of the protons in 15 

and 16 upon binding accord with the assignment of 17 as the structure of the 15.16 complex. Thus, while the 

subunits 1 and 15 behave as expected individually, the whole (4) is apparently less than the sum of its parts. 

In attempting to rationalize the diminished affinity toward 2 found with 4, we speculate that the three C-H’s 

circled in 18 am the primary culprits. In building the CPK model of 3 the best fit was obtained by slightly 

“shrinking” (with a hot air gun) the two bay-region, carbon-bound hydmgens circled in 19. Since conventional 

wisdom holds that CPK models rue, if anything, pessimistic (for instance, models of [2.2]paracyclophane cannot 
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CPh, 
17 19 

be constructed) and since 1 was demonstrated to bind2 with an affinity indicating the existence of four’ hydrogen 

bonds, we were reassured that somewhat compressing the hydrogens was valid. The results with 4 suggest that 

the hydrogens arc not so compressible and that, in effect, the cavity of 4 is too small. With 3, repulsion between 

the two bay region hydrogens and the guest can be relieved by displacement of the guest away (down, as drawn in 

19) from the receptor. In the case of 5, however, such a displacement would be disfavored since it would 

exacerbate the repulsive interaction with the C-H of the quinoline (I-It in 18). Rotation of the quinoline away from 

the uric acid as in 20 would relieve that repulsive interaction, but the two new hydrogen bonding sites in the 

quinoline unit would then be displaced from the uric acid and incapable of providing binding interactions. 

Depending on which bond (e.g., Caryl-C=O or NH-(&l: see arrows in 20) rotated (to give, e.g., 20), reduction 

of resonance overlap1 ’ andJor attenuation of one hydrogen bond interaction would account for the destabilization 

(MG = 2.7 kcal/mol) of the complex 2.4 relative to that of 2.1.12 
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The advantages of preorganization in the design of host-guest systems are well-recognize&14 binding of a 

substrate is enhanced by building into the receptor a topography inherently complementary to the substrate. The 

fewer degrees of freedom in the receptor which must be sacrificed upon biding, the smaller the entropic price that 

must be paid, While complete rigidity may characterize the ideal receptor (so long as it remains accessible to 

substrate), total inflexibility in the receptor requires perfect complementarity to the substrate for optimal binding, 

The results described herein indicate that in the design of relatively rigid receptors imprecision exacts a heavy toll. 

Extension of the implications of such findings to synthetic - as well as natural - enzymes, whemin both the reactant 

and the topographically distinct transition state must be bound (although not necessarily to equal degrees ‘3 

suggests that a judicious balance between preorganization and flexibility is desirable. 
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